organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(2-Aminophenyl)methyldiphenylphosphonium iodide

Zhongshui Li, Meipin Zhu, Aike Li, Jianxin Chen* and Li Zhang

College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, People's Republic of China Correspondence e-mail: jxchen_1964@163.com

Received 21 August 2008; accepted 22 September 2008

Key indicators: single-crystal X-ray study: T = 298 K: mean σ (C–C) = 0.004 Å: R factor = 0.031; wR factor = 0.072; data-to-parameter ratio = 20.4.

The asymmetric unit of the title compound, $C_{19}H_{19}NP^+ \cdot I^-$, contains two tetraalkylphosphonium cations and two Ianions. The P atoms are four-coordinated in distorted tetrahedral configurations by three phenyl and one methyl C atoms. There are weak intra- and intermolecular N-H···I contacts.

Related literature

For general background, see: Speiser et al. (2005); Cooper & Downes (1981); Organ et al. (1984); Wang & Jin (2005). For related structures, see: Cooper et al. (1992); Li et al. (2007); Zhang et al. (2007).

Experimental

Crystal data

 $C_{19}H_{19}NP^+ \cdot I^ M_r = 419.22$ Monoclinic, $P2_1/n$ a = 13.215 (4) Å b = 17.854 (4) Å c = 15.325 (6) Å $\beta = 93.385 \ (14)^{\circ}$

 $V = 3610 (2) \text{ Å}^3$ Z = 8Mo $K\alpha$ radiation $\mu = 1.86 \text{ mm}^{-1}$ T = 298 (2) K $0.50\,\times\,0.40\,\times\,0.40$ mm

Data collection

Rigaku Weissenberg IP

diffractometer Absorption correction: multi-scan (TEXSAN; Molecular Structure Corporation, 1998) $T_{\min} = 0.420, \ T_{\max} = 0.475$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.030$	399 parameters
$vR(F^2) = 0.071$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.70 \ {\rm e} \ {\rm \AA}^{-3}$
154 reflections	$\Delta \rho_{\rm min} = -0.66 \text{ e } \text{\AA}^{-3}$

32748 measured reflections

 $R_{\rm int} = 0.042$

8154 independent reflections

6307 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\frac{N1 - H1A \cdots I2^{i}}{N2 - H2C \cdots I1}$	0.86	2.95	3.773 (3)	160
	0.86	2.85	3.704 (3)	174

Symmetry code: (i) $x - \frac{1}{2}, -y - \frac{1}{2}, z - \frac{1}{2}$.

Data collection: TEXSAN (Molecular Structure Corporation, 1998); cell refinement: TEXSAN; data reduction: TEXSAN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

We are grateful for financial support from the Ministry of Education of China (grant No. 208066), the Natural Science Foundation of Fujian Province of China (grant Nos. 2007 J0216, U0750004), the Education Department of Fujian Province of China (grant No. JA07029) and the State Key Laboratory of Structural Chemistry (grant No. 20080053).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2515).

References

Cooper, M. K. & Downes, J. M. (1981). J. Chem. Soc. Chem. Commun. pp. 381-382.

Cooper, M. K., Downes, J. M., Duckworth, P. A. & Tiekink, E. R. T. (1992). Aust. J. Chem. 45, 595-609.

Li, A., Chen, J., Li, Z., Zhang, W. & Zhu, M. (2007). Acta Cryst. E63, 04020. Molecular Structure Corporation (1998). TEXSAN. MSC, The Woodlands, Texas, USA.

Organ, G. J., Cooper, M. K., Henrick, K. & McPartlin, M. (1984). J. Chem. Soc. Dalton Trans. pp. 2377-2382.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Speiser, F., Braustein, P. & Saussine, L. (2005). Acc. Chem. Res. 38, 784-793. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Wang, H. Y. & Jin, G. X. (2005). Eur. J. Inorg. Chem. pp. 1665-1670.

Zhang, W.-J., Chen, J.-X., Li, Z.-S., Li, A.-K. & Lin, X.-R. (2007). Acta Cryst. E63. 04016.

Acta Cryst. (2008). E64, o2016 [doi:10.1107/S160053680803047X]

(2-Aminophenyl)methyldiphenylphosphonium iodide

Z. Li, M. Zhu, A. Li, J. Chen and L. Zhang

Comment

The hybrid bidentate phosphine 2-aminophenyldiphenylphosphine was shown to be both a versatile ligand (Cooper *et al.*, 1992; Li *et al.*, 2007; Speiser *et al.*, 2005), forming amino and amido (deprotonated amino) complexes with the later transition metals (Cooper & Downes, 1981; Organ *et al.*, 1984; Wang & Jin, 2005; Zhang *et al.*, 2007), and a useful precursor to novel polydenate and macrocyclic ligands (Cooper *et al.*, 1992). During the reaction between 2-aminophenyldiphenylphosphine and 2-benzoyl-N-methylimidazole to prepare imine complexes, the title compound was obtained unexpectedly, and we report herein its crystal structure.

The asymmetric unit of the title compound (Fig. 1) contains two tetraalkylphosphonium cations and two Γ anions. The P atoms are four-coordinated in distorted tetrahedral configurations (Table 1) by three phenyl and one methyl C atoms. There is a weak intramolecular N—H···I contact (Table 2).

In the crystal structure, the weak intermolecular N—H···I contacts (Table 2 and Fig. 2) may be effective in the stabilization of the structure.

Experimental

The title compound was obtained unexpectedly by the following procedure: 2-aminophenyltriphenylphosphium (8.9 mmol) and 2-benzoyl-N-methylimidazole (8.9 mmol) were dissolved in dry methanol (30 ml) contained in a two necked round bottom flask (50 ml), an oil bubber connected to a nitrogen source, and a magnetic stir bar. A few drops of acetic acid was added. After refluxing for 8 h, solvent removal left a viscous oil. The oil was dissolved in ethanol. The resulting yellow single crystals suitable for X-ray analysis were collected by filtration.

Refinement

H atoms were positioned geometrically, with N—H = 0.86\AA (for NH₂) and C—H = 0.93 and 0.96\AA for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with $U_{iso}(H) = xU_{eq}(C,N)$, where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. A partial packing diagram of the title compound.

(2-Aminophenyl)methyldiphenylphosphonium iodide

$C_{19}H_{19}NP^+ \cdot I^-$	$F_{000} = 1664$
$M_r = 419.22$	$D_x = 1.543 \text{ Mg m}^{-3}$ $D_m = \text{no Mg m}^{-3}$ D_m measured by not measured
Monoclinic, $P2_1/n$	Melting point: no K
Hall symbol: -P 2yn	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 13.215 (4) Å	Cell parameters from 8154 reflections
b = 17.854 (4) Å	$\theta = 3.0-27.5^{\circ}$
c = 15.325 (6) Å	$\mu = 1.86 \text{ mm}^{-1}$
$\beta = 93.385 \ (14)^{\circ}$	T = 298 (2) K
$V = 3610 (2) \text{ Å}^3$	Block, yellow
Z = 8	$0.50 \times 0.40 \times 0.40$ mm

Data collection

Rigaku Weissenberg IP diffractometer	8154 independent reflections
Radiation source: fine-focus sealed tube	6307 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.042$
Detector resolution: no pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
T = 298(2) K	$\theta_{\min} = 3.0^{\circ}$
scintillation counter scans	$h = -17 \rightarrow 17$
Absorption correction: multi-scan (TEXSAN; Molecular Structure Corporation, 1998)	$k = -22 \rightarrow 23$
$T_{\min} = 0.420, \ T_{\max} = 0.475$	$l = -19 \rightarrow 19$
32748 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.030$	H-atom parameters constrained

$wR(F^2) = 0.071$	$w = 1/[\sigma^2(F_o^2) + (0.031P)^2]$
	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} = 0.001$
8154 reflections	$\Delta \rho_{max} = 0.70 \text{ e } \text{\AA}^{-3}$
399 parameters	$\Delta \rho_{min} = -0.66 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Entiration correction: none

methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and is	sotroni	or or of	minalent	isotron	nic dis	nlacomont	naramotors	1 Å-	4
racionai	uionnic	coordinates	unu i.	sonopu		juivuieni	isonop	ne uis	pracement	purumeters	(\mathbf{A})	1

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
I1	0.275253 (16)	-0.173440 (9)	0.146444 (14)	0.06249 (7)
12	0.246225 (14)	0.039910 (9)	0.389305 (12)	0.05489 (6)
P1	0.21547 (4)	-0.23074 (3)	0.46752 (4)	0.03795 (13)
P2	0.34957 (4)	-0.41826 (3)	0.81596 (4)	0.04135 (14)
N1	0.2607 (2)	-0.33502 (12)	0.30937 (18)	0.0668 (7)
H1A	0.2768	-0.3620	0.2658	0.080*
H1B	0.2769	-0.2884	0.3115	0.080*
N2	0.30679 (19)	-0.30209 (13)	0.96039 (17)	0.0629 (6)
H2B	0.2868	-0.3479	0.9614	0.076*
H2C	0.2939	-0.2723	1.0024	0.076*
C1	0.16106 (17)	-0.20039 (12)	0.56607 (16)	0.0413 (5)
C2	0.0564 (2)	-0.19164 (16)	0.5673 (2)	0.0602 (8)
H2A	0.0159	-0.1986	0.5163	0.072*
C3	0.0128 (2)	-0.17288 (16)	0.6432 (2)	0.0692 (9)
H3A	-0.0571	-0.1671	0.6435	0.083*
C4	0.0720 (3)	-0.16268 (16)	0.7185 (2)	0.0676 (8)
H4A	0.0422	-0.1507	0.7701	0.081*
C5	0.1752 (3)	-0.17011 (15)	0.7179 (2)	0.0611 (7)
H5A	0.2153	-0.1627	0.7691	0.073*
C6	0.2199 (2)	-0.18849 (12)	0.64174 (18)	0.0471 (6)
H6A	0.2900	-0.1929	0.6416	0.056*
C7	0.34992 (17)	-0.22050 (12)	0.48204 (16)	0.0417 (5)
C8	0.3946 (2)	-0.15029 (15)	0.4743 (2)	0.0574 (7)
H8A	0.3558	-0.1097	0.4541	0.069*
C9	0.4958 (2)	-0.14136 (17)	0.4966 (2)	0.0677 (8)

H9A	0.5257	-0.0945	0.4924	0.081*
C10	0.5530 (2)	-0.20159 (19)	0.5252 (2)	0.0661 (8)
H10A	0.6216	-0.1951	0.5406	0.079*
C11	0.5107 (2)	-0.27100 (17)	0.5314 (2)	0.0667 (8)
H11A	0.5506	-0.3115	0.5501	0.080*
C12	0.40877 (19)	-0.28112 (14)	0.5101 (2)	0.0555 (7)
H12A	0.3797	-0.3283	0.5144	0.067*
C13	0.18399 (17)	-0.32710 (11)	0.45066 (16)	0.0399 (5)
C14	0.13475 (19)	-0.36486 (13)	0.51540 (18)	0.0474 (6)
H14A	0.1178	-0.3391	0.5652	0.057*
C15	0.1108 (2)	-0.43940 (14)	0.5070 (2)	0.0559 (7)
H15A	0.0775	-0.4639	0.5506	0.067*
C16	0.1366 (2)	-0.47742 (14)	0.4334 (2)	0.0570(7)
H16A	0.1208	-0.5280	0.4277	0.068*
C17	0.18451 (19)	-0.44243 (13)	0.3692 (2)	0.0515 (6)
H17A	0.2011	-0.4696	0.3203	0.062*
C18	0.20976 (18)	-0.36601 (13)	0.37475 (17)	0.0456 (6)
C19	0.38306 (17)	-0.32116 (12)	0.82121 (17)	0.0429 (5)
C20	0.43743 (19)	-0.28979 (15)	0.75442 (18)	0.0503 (6)
H20A	0.4531	-0.3191	0.7069	0.060*
C21	0.4678 (2)	-0.21594 (16)	0.7585 (2)	0.0596 (7)
H21A	0.5032	-0.1953	0.7137	0.071*
C22	0.4457 (2)	-0.17343 (16)	0.8287 (2)	0.0629 (8)
H22A	0.4676	-0.1240	0.8318	0.076*
C23	0.3919 (2)	-0.20197(15)	0.8946 (2)	0.0587 (7)
H23A	0.3772	-0.1714	0.9413	0.070*
C24	0 35822 (18)	-0.27696(13)	0 89301 (18)	0 0484 (6)
C25	0 39532 (19)	-0.46171(13)	0 72040 (17)	0.0470 (6)
C26	0 4990 (2)	-0.47327(17)	0.7155 (2)	0.0623 (7)
H26A	0 5445	-0.4541	0.7585	0.075*
C27	0 5336 (3)	-0.5131(2)	0.6468 (3)	0.0788 (10)
H27A	0.6028	-0.5203	0.6427	0.095*
C28	0.4667 (3)	-0.54243(18)	0.5843(2)	0.0809(10)
H28A	0.4910	-0.5706	0.5389	0.097*
C29	0.3650 (3)	-0.53088(19)	0.5878 (2)	0.0769 (9)
Н294	0.3202	-0 5507	0.5447	0.092*
C30	0.3282 (2)	-0.48961(16)	0.65574 (19)	0.052
H30A	0.2596	-0.4807	0.6578	0.0550 (7)
C31	0.2370	-0.42786(12)	0.81176 (16)	0.071
C32	0.21474(10)	-0.49125(14)	0.8414(2)	0.0421(3) 0.0582(7)
H32 A	0.1081 (2)	-0.5284	0.8703	0.0302 (7)
C33	0.2004	-0.49951(17)	0.8703	0.0604 (8)
H33 A	0.0043 (2)	-0.5427	0.8285 (2)	0.0094 (8)
C34	0.0333	-0.44431(18)	0.3475	0.0650 (8)
H34A	-0.0627	-0.4503	0.7870 (2)	0.0030 (8)
C25	0.0027	-0.38083(17)	0.7782	0.070
UJJ H35A	0.0322 (2)	0.30003 (17)	0.7300 (2)	0.0057(8)
1155A C26	0.15576 (10)	0.3433 -0.37160 (15)	0.7515	0.070°
	0.13370(19)	-0.37109 (13)	0.7709(2)	0.0343(/)
пзоа	0.1802	-0.3282	0./319	0.005*

C37	0.1658 (2)	-0.17182 (13)	0.38091 (19)	0.0541 (7)
H37A	0.1934	-0.1867	0.3270	0.081*
H37B	0.1839	-0.1207	0.3935	0.081*
H37C	0.0933	-0.1763	0.3757	0.081*
C38	0.4077 (2)	-0.46872 (15)	0.90723 (18)	0.0568 (7)
H38A	0.3858	-0.4478	0.9607	0.085*
H38B	0.4801	-0.4648	0.9064	0.085*
H38C	0.3881	-0.5205	0.9033	0.085*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.06953 (13)	0.05555 (10)	0.06229 (14)	-0.01435 (9)	0.00288 (9)	-0.00578 (8)
I2	0.06649 (12)	0.04646 (9)	0.05246 (12)	0.00345 (8)	0.00974 (8)	-0.00069 (7)
P1	0.0329 (3)	0.0367 (3)	0.0434 (4)	-0.0001 (2)	-0.0050 (2)	-0.0038 (2)
P2	0.0374 (3)	0.0479 (3)	0.0388 (4)	0.0053 (3)	0.0025 (2)	0.0052 (2)
N1	0.0872 (18)	0.0564 (12)	0.0591 (17)	-0.0070 (12)	0.0244 (13)	-0.0138 (11)
N2	0.0675 (15)	0.0593 (12)	0.0638 (17)	-0.0099 (12)	0.0195 (12)	-0.0092 (11)
C1	0.0361 (11)	0.0373 (10)	0.0499 (15)	-0.0006 (10)	-0.0013 (10)	-0.0056 (9)
C2	0.0374 (13)	0.0737 (17)	0.069 (2)	0.0038 (13)	-0.0052 (13)	-0.0219 (14)
C3	0.0462 (15)	0.0749 (18)	0.088 (3)	0.0090 (14)	0.0137 (16)	-0.0209 (16)
C4	0.078 (2)	0.0615 (16)	0.065 (2)	0.0071 (16)	0.0250 (17)	-0.0126 (14)
C5	0.076 (2)	0.0607 (15)	0.0457 (17)	0.0054 (14)	-0.0034 (14)	-0.0122 (12)
C6	0.0444 (13)	0.0442 (12)	0.0517 (17)	0.0042 (11)	-0.0056 (11)	-0.0036 (10)
C7	0.0346 (11)	0.0467 (11)	0.0435 (14)	-0.0018 (10)	0.0008 (10)	-0.0023 (9)
C8	0.0474 (14)	0.0558 (14)	0.068 (2)	-0.0087 (13)	-0.0006 (13)	0.0111 (13)
С9	0.0540 (16)	0.0747 (19)	0.075 (2)	-0.0247 (16)	0.0072 (15)	0.0050 (15)
C10	0.0337 (12)	0.094 (2)	0.070 (2)	-0.0050 (15)	0.0034 (13)	-0.0072 (17)
C11	0.0416 (14)	0.0733 (18)	0.084 (2)	0.0136 (14)	-0.0080 (14)	-0.0139 (15)
C12	0.0400 (13)	0.0503 (13)	0.075 (2)	0.0041 (11)	-0.0053 (13)	-0.0077 (12)
C13	0.0356 (11)	0.0383 (10)	0.0453 (14)	-0.0005 (9)	-0.0036 (10)	-0.0058 (9)
C14	0.0469 (13)	0.0463 (12)	0.0490 (16)	-0.0050 (11)	0.0035 (11)	-0.0042 (10)
C15	0.0534 (15)	0.0488 (13)	0.066 (2)	-0.0086 (12)	0.0069 (13)	0.0023 (12)
C16	0.0489 (14)	0.0421 (12)	0.080 (2)	-0.0055 (12)	0.0009 (14)	-0.0082 (12)
C17	0.0431 (13)	0.0463 (12)	0.0649 (19)	0.0016 (11)	0.0016 (12)	-0.0159 (11)
C18	0.0394 (12)	0.0482 (12)	0.0491 (16)	0.0002 (10)	0.0021 (11)	-0.0070 (10)
C19	0.0329 (11)	0.0505 (12)	0.0445 (15)	-0.0007 (10)	-0.0035 (10)	0.0040 (10)
C20	0.0449 (13)	0.0605 (14)	0.0449 (16)	0.0013 (12)	-0.0026 (11)	0.0120 (11)
C21	0.0510 (15)	0.0682 (16)	0.0584 (19)	-0.0098 (14)	-0.0054 (13)	0.0220 (14)
C22	0.0557 (16)	0.0597 (15)	0.071 (2)	-0.0132 (13)	-0.0152 (15)	0.0127 (14)
C23	0.0549 (15)	0.0541 (14)	0.065 (2)	-0.0018 (13)	-0.0098 (14)	-0.0042 (13)
C24	0.0390 (12)	0.0532 (13)	0.0522 (17)	-0.0007 (11)	-0.0032 (11)	0.0012 (11)
C25	0.0475 (13)	0.0523 (12)	0.0418 (15)	0.0085 (11)	0.0080 (11)	0.0064 (10)
C26	0.0478 (15)	0.0783 (18)	0.062 (2)	0.0108 (14)	0.0118 (13)	0.0048 (14)
C27	0.069 (2)	0.094 (2)	0.076 (3)	0.0229 (19)	0.0317 (19)	0.0120 (19)
C28	0.112 (3)	0.076 (2)	0.059 (2)	0.024 (2)	0.037 (2)	0.0026 (16)
C29	0.099 (3)	0.088 (2)	0.0444 (19)	0.006 (2)	0.0065 (17)	-0.0067 (15)
C30	0.0576 (16)	0.0761 (17)	0.0433 (17)	0.0080 (14)	0.0033 (13)	0.0010 (13)

C31	0.0402 (12)	0.0436 (11)	0.0432 (15)	0.0006 (10)	0.0093 (10)	-0.0015 (9)	
C32	0.0593 (16)	0.0474 (13)	0.069 (2)	-0.0003 (13)	0.0111 (14)	0.0024 (12)	
C33	0.0682 (19)	0.0611 (16)	0.081 (2)	-0.0247 (16)	0.0187 (17)	-0.0029 (15)	
C34	0.0441 (14)	0.086 (2)	0.066 (2)	-0.0122 (15)	0.0065 (14)	-0.0136 (15)	
C35	0.0416 (14)	0.0784 (18)	0.070 (2)	0.0025 (14)	-0.0012 (13)	0.0112 (15)	
C36	0.0400 (13)	0.0558 (14)	0.0669 (19)	-0.0021 (11)	0.0005 (12)	0.0163 (12)	
C37	0.0595 (16)	0.0490 (13)	0.0519 (17)	0.0025 (12)	-0.0116 (13)	0.0024 (11)	
C38	0.0585 (16)	0.0671 (15)	0.0443 (16)	0.0171 (13)	-0.0013 (12)	0.0104 (12)	
Geometric para	meters (Å, °)						
P1		1 785 (2)	C16-		1 35	5 (4)	
P1C7		1.785(2)	C16	_H16A	0.9300		
P1-C37		1.788 (3)	C10	C16—H16A		1 406 (3)	
P1		1.700 (3)	C17 - C18 1.406 (3) C17 - H17A 0.0200		00		
P2-C31		1.797 (2)	C1/H1/A 0.9300 C19C20 1.402 (4)		2 (4)		
P2-C19		1 790 (2)	C19-		1.10	9 (4)	
P2		1.793 (3)	C19-C24 C20-C21		1.10	1.409(4) 1 379(4)	
P2-C38		1 797 (3)	C20-	C20—C21 C20—H20A		0.9300	
N1-C18		1.358 (4)	C20—1120A C21—C22		1.362 (5)		
N1—H1A		0.8600	C21—C22		0.9300		
N1—H1B		0.8600	C22–	C22-C23 1 368		8 (5)	
N2—C24		1.346 (4)	C22–	C22—H22A		00	
N2—H2B		0.8600	C23–	C24	1.41	1 (4)	
N2—H2C		0.8600	C23–	-H23A	0.93	00	
C1—C6		1.374 (3)	C25–	C30	1.37	8 (4)	
C1—C2		1.393 (3)	C25–	C26	1.39	2 (4)	
С2—С3		1.369 (5)	C26–	C27	1.37	1 (5)	
C2—H2A		0.9300	C26–	-H26A	0.93	00	
C3—C4		1.367 (5)	C27–	C28	1.36	8 (5)	
С3—НЗА		0.9300	C27–	–H27A	0.93	00	
C4—C5		1.371 (4)	C28–	C29	1.36	4 (5)	
C4—H4A		0.9300	C28–	-H28A	0.93	00	
C5—C6		1.378 (4)	C29–	-C30	1.38	4 (4)	
С5—Н5А		0.9300	C29–	-H29A	0.93	00	
С6—Н6А		0.9300	C30–	-H30A	0.93	00	
C7—C12		1.386 (3)	C31–	C32	1.37	9 (3)	
С7—С8		1.393 (3)	C31–	C36	1.39	5 (3)	
С8—С9		1.370 (4)	C32–	C33	1.38	0 (4)	
C8—H8A		0.9300	C32–	-H32A	0.93	00	
C9—C10		1.372 (4)	C33–	C34	1.37	6 (4)	
С9—Н9А		0.9300	C33–	-H33A	0.93	00	
C10—C11		1.365 (4)	C34–	C35	1.36	3 (4)	
C10—H10A		0.9300	C34–	-H34A	0.93	00	
C11—C12		1.379 (4)	C35–	C36	1.37	9 (4)	
C11—H11A		0.9300	C35–	-H35A	0.93	00	
C12—H12A		0.9300	C36–	-H36A	0.93	00	
C13—C14		1.392 (4)	C37–	–H37A	0.96	00	
C13—C18		1.414 (3)	C37–	–H37B	0.96	00	

C14—C15	1.372 (3)	С37—Н37С	0.9600
C14—H14A	0.9300	C38—H38A	0.9600
C15—C16	1.377 (4)	C38—H38B	0.9600
C15—H15A	0.9300	C38—H38C	0.9600
C13—P1—C7	109.76 (10)	N1—C18—C17	118.5 (2)
C13—P1—C37	112.79 (11)	N1—C18—C13	124.1 (2)
C7—P1—C37	110.56 (13)	C17—C18—C13	117.3 (2)
C13—P1—C1	108.14 (12)	C20-C19-C24	120.0 (2)
C7—P1—C1	108.01 (11)	C20-C19-P2	119.4 (2)
C37—P1—C1	107.41 (13)	C24—C19—P2	120.6 (2)
C31—P2—C19	109.75 (10)	C21—C20—C19	120.6 (3)
C31—P2—C25	108.21 (12)	C21—C20—H20A	119.7
C19—P2—C25	111.18 (12)	С19—С20—Н20А	119.7
C31—P2—C38	111.04 (13)	C22—C21—C20	119.6 (3)
C19—P2—C38	110.94 (12)	C22—C21—H21A	120.2
C25—P2—C38	105.63 (13)	C20—C21—H21A	120.2
C18—N1—H1A	120.0	C21—C22—C23	121.4 (3)
C18—N1—H1B	120.0	C21—C22—H22A	119.3
H1A—N1—H1B	120.0	С23—С22—Н22А	119.3
C24—N2—H2B	120.0	C22—C23—C24	121.2 (3)
C24—N2—H2C	120.0	С22—С23—Н23А	119.4
H2B—N2—H2C	120.0	C24—C23—H23A	119.4
C6—C1—C2	118.9 (2)	N2—C24—C19	124.3 (2)
C6—C1—P1	121.49 (19)	N2—C24—C23	118.4 (3)
C2—C1—P1	119.55 (19)	C19—C24—C23	117.2 (3)
C3—C2—C1	120.5 (3)	C30—C25—C26	119.7 (3)
C3—C2—H2A	119.8	C30—C25—P2	120.8 (2)
C1—C2—H2A	119.8	C26—C25—P2	119.2 (2)
C4—C3—C2	120.1 (3)	C27—C26—C25	119.4 (3)
С4—С3—НЗА	120.0	С27—С26—Н26А	120.3
С2—С3—НЗА	120.0	C25—C26—H26A	120.3
C3—C4—C5	120.1 (3)	C28—C27—C26	120.4 (3)
C3—C4—H4A	120.0	С28—С27—Н27А	119.8
C5—C4—H4A	120.0	С26—С27—Н27А	119.8
C4—C5—C6	120.3 (3)	C29—C28—C27	120.8 (3)
C4—C5—H5A	119.9	C29—C28—H28A	119.6
С6—С5—Н5А	119.9	C27—C28—H28A	119.6
C1—C6—C5	120.2 (3)	C28—C29—C30	119.7 (3)
С1—С6—Н6А	119.9	С28—С29—Н29А	120.2
С5—С6—Н6А	119.9	С30—С29—Н29А	120.2
C12—C7—C8	119.7 (2)	C25—C30—C29	120.0 (3)
C12—C7—P1	119.62 (18)	С25—С30—Н30А	120.0
C8—C7—P1	120.29 (18)	С29—С30—Н30А	120.0
C9—C8—C7	119.7 (3)	C32—C31—C36	119.3 (2)
С9—С8—Н8А	120.2	C32—C31—P2	122.06 (19)
С7—С8—Н8А	120.2	C36—C31—P2	118.45 (18)
C8—C9—C10	120.0 (3)	C31—C32—C33	119.9 (3)
С8—С9—Н9А	120.0	C31—C32—H32A	120.1
С10—С9—Н9А	120.0	C33—C32—H32A	120.1

C11—C10—C9	120.9 (2)	C34—C33—C32	120.5 (3)
C11—C10—H10A	119.6	С34—С33—Н33А	119.8
C9—C10—H10A	119.6	С32—С33—Н33А	119.8
C10-C11-C12	120.1 (3)	C35—C34—C33	120.1 (3)
C10-C11-H11A	120.0	С35—С34—Н34А	120.0
C12—C11—H11A	120.0	С33—С34—Н34А	120.0
C11—C12—C7	119.6 (2)	C34—C35—C36	120.4 (3)
C11—C12—H12A	120.2	С34—С35—Н35А	119.8
C7—C12—H12A	120.2	С36—С35—Н35А	119.8
C14—C13—C18	119.6 (2)	C35—C36—C31	119.9 (2)
C14—C13—P1	118.57 (18)	С35—С36—Н36А	120.1
C18—C13—P1	121.82 (19)	С31—С36—Н36А	120.1
C15—C14—C13	121.2 (2)	Р1—С37—Н37А	109.5
C15—C14—H14A	119.4	Р1—С37—Н37В	109.5
C13—C14—H14A	119.4	Н37А—С37—Н37В	109.5
C14—C15—C16	119.2 (3)	Р1—С37—Н37С	109.5
C14—C15—H15A	120.4	Н37А—С37—Н37С	109.5
C16—C15—H15A	120.4	Н37В—С37—Н37С	109.5
C17—C16—C15	121.2 (2)	P2—C38—H38A	109.5
C17—C16—H16A	119.4	P2—C38—H38B	109.5
C15—C16—H16A	119.4	H38A—C38—H38B	109.5
C16—C17—C18	121.5 (3)	Р2—С38—Н38С	109.5
С16—С17—Н17А	119.2	H38A—C38—H38C	109.5
C18—C17—H17A	119.2	H38B—C38—H38C	109.5
C13—P1—C1—C6	106.0 (2)	C31—P2—C19—C20	-119.13 (19)
C7—P1—C1—C6	-12.7 (2)	C25—P2—C19—C20	0.6 (2)
C37—P1—C1—C6	-132.0 (2)	C38—P2—C19—C20	117.8 (2)
C13—P1—C1—C2	-71.2 (2)	C31—P2—C19—C24	63.0 (2)
C7—P1—C1—C2	170.1 (2)	C25—P2—C19—C24	-177.35 (18)
C37—P1—C1—C2	50.8 (2)	C38—P2—C19—C24	-60.1 (2)
C6—C1—C2—C3	-1.2 (4)	C24—C19—C20—C21	0.6 (3)
P1—C1—C2—C3	176.1 (2)	P2-C19-C20-C21	-177.34 (19)
C1—C2—C3—C4	-0.1 (5)	C19—C20—C21—C22	0.7 (4)
C2—C3—C4—C5	1.0 (5)	C20—C21—C22—C23	-1.4 (4)
C3—C4—C5—C6	-0.6 (4)	C21—C22—C23—C24	0.8 (4)
C2—C1—C6—C5	1.6 (4)	C20—C19—C24—N2	-179.7 (2)
P1—C1—C6—C5	-175.60 (19)	P2-C19-C24-N2	-1.8 (3)
C4—C5—C6—C1	-0.8 (4)	C20—C19—C24—C23	-1.2 (3)
C13—P1—C7—C12	-23.0 (3)	P2-C19-C24-C23	176.74 (18)
C37—P1—C7—C12	-148.0 (2)	C22—C23—C24—N2	179.1 (2)
C1—P1—C7—C12	94.7 (2)	C22—C23—C24—C19	0.5 (4)
C13—P1—C7—C8	163.8 (2)	C31—P2—C25—C30	5.3 (2)
C37—P1—C7—C8	38.7 (3)	C19—P2—C25—C30	-115.3 (2)
C1—P1—C7—C8	-78.5 (2)	C38—P2—C25—C30	124.2 (2)
C12—C7—C8—C9	-1.7 (4)	C31—P2—C25—C26	-168.9 (2)
P1—C7—C8—C9	171.5 (3)	C19—P2—C25—C26	70.5 (2)
C7—C8—C9—C10	0.9 (5)	C38—P2—C25—C26	-50.0 (2)
C8—C9—C10—C11	0.4 (5)	C30—C25—C26—C27	-0.8 (4)
C9—C10—C11—C12	-0.9 (5)	P2—C25—C26—C27	173.4 (2)

C10-C11-C12-C7	0.2 (5)	C25—C26—C27—C28	-1.1 (5)
C8—C7—C12—C11	1.1 (4)	C26—C27—C28—C29	1.8 (5)
P1-C7-C12-C11	-172.1 (2)	C27—C28—C29—C30	-0.6 (5)
C7—P1—C13—C14	111.5 (2)	C26—C25—C30—C29	2.0 (4)
C37—P1—C13—C14	-124.8 (2)	P2-C25-C30-C29	-172.2 (2)
C1—P1—C13—C14	-6.2 (2)	C28—C29—C30—C25	-1.3 (5)
C7—P1—C13—C18	-67.1 (2)	C19—P2—C31—C32	-153.7 (2)
C37—P1—C13—C18	56.7 (2)	C25—P2—C31—C32	84.8 (2)
C1—P1—C13—C18	175.32 (18)	C38—P2—C31—C32	-30.7 (3)
C18—C13—C14—C15	0.1 (4)	C19—P2—C31—C36	31.3 (3)
P1-C13-C14-C15	-178.4 (2)	C25—P2—C31—C36	-90.1 (2)
C13—C14—C15—C16	0.4 (4)	C38—P2—C31—C36	154.4 (2)
C14-C15-C16-C17	-0.4 (4)	C36—C31—C32—C33	1.9 (4)
C15-C16-C17-C18	-0.1 (4)	P2-C31-C32-C33	-173.0 (2)
C16—C17—C18—N1	177.9 (3)	C31—C32—C33—C34	-1.1 (5)
C16—C17—C18—C13	0.6 (4)	C32—C33—C34—C35	-0.1 (5)
C14-C13-C18-N1	-177.7 (2)	C33—C34—C35—C36	0.5 (5)
P1-C13-C18-N1	0.8 (3)	C34—C35—C36—C31	0.3 (5)
C14-C13-C18-C17	-0.6 (3)	C32—C31—C36—C35	-1.5 (4)
P1-C13-C18-C17	177.91 (17)	P2-C31-C36-C35	173.6 (2)

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1A····I2 ⁱ	0.86	2.95	3.773 (3)	160
N2—H2C…I1	0.86	2.85	3.704 (3)	174
Symmetry codes: (i) $x-1/2$, $-y-1/2$, $z-1/2$.				

Fig. 1

Fig. 2